Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Eur J Nucl Med Mol Imaging ; 48(8): 2500-2524, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1208672

RESUMEN

Medical imaging methods are assuming a greater role in the workup of patients with COVID-19, mainly in relation to the primary manifestation of pulmonary disease and the tissue distribution of the angiotensin-converting-enzyme 2 (ACE 2) receptor. However, the field is so new that no consensus view has emerged guiding clinical decisions to employ imaging procedures such as radiography, computer tomography (CT), positron emission tomography (PET), and magnetic resonance imaging, and in what measure the risk of exposure of staff to possible infection could be justified by the knowledge gained. The insensitivity of current RT-PCR methods for positive diagnosis is part of the rationale for resorting to imaging procedures. While CT is more sensitive than genetic testing in hospitalized patients, positive findings of ground glass opacities depend on the disease stage. There is sparse reporting on PET/CT with [18F]-FDG in COVID-19, but available results are congruent with the earlier literature on viral pneumonias. There is a high incidence of cerebral findings in COVID-19, and likewise evidence of gastrointestinal involvement. Artificial intelligence, notably machine learning is emerging as an effective method for diagnostic image analysis, with performance in the discriminative diagnosis of diagnosis of COVID-19 pneumonia comparable to that of human practitioners.


Asunto(s)
COVID-19 , Neumonía Viral , Inteligencia Artificial , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , SARS-CoV-2
2.
Radiology ; 298(1): E46-E54, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1029984

RESUMEN

Background The prognosis of hospitalized patients with severe coronavirus disease 2019 (COVID-19) is difficult to predict, and the capacity of intensive care units was a limiting factor during the peak of the pandemic and is generally dependent on a country's clinical resources. Purpose To determine the value of chest radiographic findings together with patient history and laboratory markers at admission to predict critical illness in hospitalized patients with COVID-19. Materials and Methods In this retrospective study, which included patients from March 7, 2020, to April 24, 2020, a consecutive cohort of hospitalized patients with real-time reverse transcription polymerase chain reaction-confirmed COVID-19 from two large Dutch community hospitals was identified. After univariable analysis, a risk model to predict critical illness (ie, death and/or intensive care unit admission with invasive ventilation) was developed, using multivariable logistic regression including clinical, chest radiographic, and laboratory findings. Distribution and severity of lung involvement were visually assessed by using an eight-point scale (chest radiography score). Internal validation was performed by using bootstrapping. Performance is presented as an area under the receiver operating characteristic curve. Decision curve analysis was performed, and a risk calculator was derived. Results The cohort included 356 hospitalized patients (mean age, 69 years ± 12 [standard deviation]; 237 men) of whom 168 (47%) developed critical illness. The final risk model's variables included sex, chronic obstructive lung disease, symptom duration, neutrophil count, C-reactive protein level, lactate dehydrogenase level, distribution of lung disease, and chest radiography score at hospital presentation. The area under the receiver operating characteristic curve of the model was 0.77 (95% CI: 0.72, 0.81; P < .001). A risk calculator was derived for individual risk assessment: Dutch COVID-19 risk model. At an example threshold of 0.70, 71 of 356 patients would be predicted to develop critical illness, of which 59 (83%) would be true-positive results. Conclusion A risk model based on chest radiographic and laboratory findings obtained at admission was predictive of critical illness in hospitalized patients with coronavirus disease 2019. This risk calculator might be useful for triage of patients to the limited number of intensive care unit beds or facilities. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
COVID-19/diagnóstico por imagen , Hospitalización , Radiografía Torácica , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Enfermedad Crítica/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Pronóstico , Estudios Retrospectivos
3.
Radiology ; 298(1): E18-E28, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1029186

RESUMEN

Background The coronavirus disease 2019 (COVID-19) pandemic has spread across the globe with alarming speed, morbidity, and mortality. Immediate triage of patients with chest infections suspected to be caused by COVID-19 using chest CT may be of assistance when results from definitive viral testing are delayed. Purpose To develop and validate an artificial intelligence (AI) system to score the likelihood and extent of pulmonary COVID-19 on chest CT scans using the COVID-19 Reporting and Data System (CO-RADS) and CT severity scoring systems. Materials and Methods The CO-RADS AI system consists of three deep-learning algorithms that automatically segment the five pulmonary lobes, assign a CO-RADS score for the suspicion of COVID-19, and assign a CT severity score for the degree of parenchymal involvement per lobe. This study retrospectively included patients who underwent a nonenhanced chest CT examination because of clinical suspicion of COVID-19 at two medical centers. The system was trained, validated, and tested with data from one of the centers. Data from the second center served as an external test set. Diagnostic performance and agreement with scores assigned by eight independent observers were measured using receiver operating characteristic analysis, linearly weighted κ values, and classification accuracy. Results A total of 105 patients (mean age, 62 years ± 16 [standard deviation]; 61 men) and 262 patients (mean age, 64 years ± 16; 154 men) were evaluated in the internal and external test sets, respectively. The system discriminated between patients with COVID-19 and those without COVID-19, with areas under the receiver operating characteristic curve of 0.95 (95% CI: 0.91, 0.98) and 0.88 (95% CI: 0.84, 0.93), for the internal and external test sets, respectively. Agreement with the eight human observers was moderate to substantial, with mean linearly weighted κ values of 0.60 ± 0.01 for CO-RADS scores and 0.54 ± 0.01 for CT severity scores. Conclusion With high diagnostic performance, the CO-RADS AI system correctly identified patients with COVID-19 using chest CT scans and assigned standardized CO-RADS and CT severity scores that demonstrated good agreement with findings from eight independent observers and generalized well to external data. © RSNA, 2020 Supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , COVID-19/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Tórax/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Anciano , Sistemas de Datos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proyectos de Investigación , Estudios Retrospectivos
4.
Radiology ; 298(3): E156-E157, 2021 03.
Artículo en Inglés | MEDLINE | ID: covidwho-963852
5.
Radiology ; 296(3): E166-E172, 2020 09.
Artículo en Inglés | MEDLINE | ID: covidwho-722986

RESUMEN

Background Chest radiography may play an important role in triage for coronavirus disease 2019 (COVID-19), particularly in low-resource settings. Purpose To evaluate the performance of an artificial intelligence (AI) system for detection of COVID-19 pneumonia on chest radiographs. Materials and Methods An AI system (CAD4COVID-XRay) was trained on 24 678 chest radiographs, including 1540 used only for validation while training. The test set consisted of a set of continuously acquired chest radiographs (n = 454) obtained in patients suspected of having COVID-19 pneumonia between March 4 and April 6, 2020, at one center (223 patients with positive reverse transcription polymerase chain reaction [RT-PCR] results, 231 with negative RT-PCR results). Radiographs were independently analyzed by six readers and by the AI system. Diagnostic performance was analyzed with the receiver operating characteristic curve. Results For the test set, the mean age of patients was 67 years ± 14.4 (standard deviation) (56% male). With RT-PCR test results as the reference standard, the AI system correctly classified chest radiographs as COVID-19 pneumonia with an area under the receiver operating characteristic curve of 0.81. The system significantly outperformed each reader (P < .001 using the McNemar test) at their highest possible sensitivities. At their lowest sensitivities, only one reader significantly outperformed the AI system (P = .04). Conclusion The performance of an artificial intelligence system in the detection of coronavirus disease 2019 on chest radiographs was comparable with that of six independent readers. © RSNA, 2020.


Asunto(s)
Inteligencia Artificial , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radiografía Torácica/métodos , Anciano , Anciano de 80 o más Años , Betacoronavirus , COVID-19 , Bases de Datos Factuales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Curva ROC , SARS-CoV-2 , Tomografía Computarizada por Rayos X
6.
Radiology ; 296(1): 172-180, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-38290

RESUMEN

With more than 900 000 confirmed cases worldwide and nearly 50 000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/diagnóstico por imagen , Pandemias , Neumonía Viral/diagnóstico por imagen , Radiografía Torácica/métodos , COVID-19 , Consenso , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/virología , Progresión de la Enfermedad , Salud Global , Adhesión a Directriz , Humanos , Equipo de Protección Personal , Neumonía Viral/fisiopatología , Neumonía Viral/virología , Radiografía Torácica/instrumentación , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Sociedades Médicas , Triaje , Grabación en Video
7.
Radiology ; 296(2): E97-E104, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-683271

RESUMEN

Background A categorical CT assessment scheme for suspicion of pulmonary involvement of coronavirus disease 2019 (COVID-19 provides a basis for gathering scientific evidence and improved communication with referring physicians. Purpose To introduce the COVID-19 Reporting and Data System (CO-RADS) for use in the standardized assessment of pulmonary involvement of COVID-19 on unenhanced chest CT images and to report its initial interobserver agreement and performance. Materials and Methods The Dutch Radiological Society developed CO-RADS based on other efforts for standardization, such as the Lung Imaging Reporting and Data System or Breast Imaging Reporting and Data System. CO-RADS assesses the suspicion for pulmonary involvement of COVID-19 on a scale from 1 (very low) to 5 (very high). The system is meant to be used in patients with moderate to severe symptoms of COVID-19. The system was evaluated by using 105 chest CT scans of patients admitted to the hospital with clinical suspicion of COVID-19 and in whom reverse transcription-polymerase chain reaction (RT-PCR) was performed (mean, 62 years ± 16 [standard deviation]; 61 men, 53 with positive RT-PCR results). Eight observers used CO-RADS to assess the scans. Fleiss κ value was calculated, and scores of individual observers were compared with the median of the remaining seven observers. The resulting area under the receiver operating characteristics curve (AUC) was compared with results from RT-PCR and clinical diagnosis of COVID-19. Results There was absolute agreement among observers in 573 (68.2%) of 840 observations. Fleiss κ value was 0.47 (95% confidence interval [CI]: 0.45, 0.47), with the highest κ value for CO-RADS categories 1 (0.58, 95% CI: 0.54, 0.62) and 5 (0.68, 95% CI: 0.65, 0.72). The average AUC was 0.91 (95% CI: 0.85, 0.97) for predicting RT-PCR outcome and 0.95 (95% CI: 0.91, 0.99) for clinical diagnosis. The false-negative rate for CO-RADS 1 was nine of 161 cases (5.6%; 95% CI: 1.0%, 10%), and the false-positive rate for CO-RADS category 5 was one of 286 (0.3%; 95% CI: 0%, 1.0%). Conclusion The coronavirus disease 2019 (COVID-19) Reporting and Data System (CO-RADS) is a categorical assessment scheme for pulmonary involvement of COVID-19 at unenhanced chest CT that performs very well in predicting COVID-19 in patients with moderate to severe symptoms and has substantial interobserver agreement, especially for categories 1 and 5. © RSNA, 2020 Online supplemental material is available for this article.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico por imagen , Neumonía Viral/diagnóstico por imagen , Tomografía Computarizada por Rayos X/normas , Adulto , Anciano , COVID-19 , Comunicación , Femenino , Humanos , Pulmón/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Países Bajos , Variaciones Dependientes del Observador , Pandemias , Sistemas de Información Radiológica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
8.
Chest ; 158(1): 106-116, 2020 07.
Artículo en Inglés | MEDLINE | ID: covidwho-634902

RESUMEN

With more than 900,000 confirmed cases worldwide and nearly 50,000 deaths during the first 3 months of 2020, the coronavirus disease 2019 (COVID-19) pandemic has emerged as an unprecedented health care crisis. The spread of COVID-19 has been heterogeneous, resulting in some regions having sporadic transmission and relatively few hospitalized patients with COVID-19 and others having community transmission that has led to overwhelming numbers of severe cases. For these regions, health care delivery has been disrupted and compromised by critical resource constraints in diagnostic testing, hospital beds, ventilators, and health care workers who have fallen ill to the virus exacerbated by shortages of personal protective equipment. Although mild cases mimic common upper respiratory viral infections, respiratory dysfunction becomes the principal source of morbidity and mortality as the disease advances. Thoracic imaging with chest radiography and CT are key tools for pulmonary disease diagnosis and management, but their role in the management of COVID-19 has not been considered within the multivariable context of the severity of respiratory disease, pretest probability, risk factors for disease progression, and critical resource constraints. To address this deficit, a multidisciplinary panel comprised principally of radiologists and pulmonologists from 10 countries with experience managing patients with COVID-19 across a spectrum of health care environments evaluated the utility of imaging within three scenarios representing varying risk factors, community conditions, and resource constraints. Fourteen key questions, corresponding to 11 decision points within the three scenarios and three additional clinical situations, were rated by the panel based on the anticipated value of the information that thoracic imaging would be expected to provide. The results were aggregated, resulting in five main and three additional recommendations intended to guide medical practitioners in the use of chest radiography and CT in the management of COVID-19.


Asunto(s)
Infecciones por Coronavirus , Pulmón/diagnóstico por imagen , Pandemias , Manejo de Atención al Paciente , Neumonía Viral , Radiografía Torácica/métodos , Enfermedades Respiratorias , Tomografía Computarizada por Rayos X/métodos , Betacoronavirus/aislamiento & purificación , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/fisiopatología , Infecciones por Coronavirus/terapia , Diagnóstico Diferencial , Progresión de la Enfermedad , Diagnóstico Precoz , Humanos , Cooperación Internacional , Manejo de Atención al Paciente/métodos , Manejo de Atención al Paciente/normas , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/fisiopatología , Neumonía Viral/terapia , Enfermedades Respiratorias/diagnóstico , Enfermedades Respiratorias/virología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA